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Abstract We investigate the transverse coronal-loop oscillations induced by the
eruption of a prominence-carrying flux rope on 7 December 2012. The flux rope
originating from NOAA Active Region (AR) 11621 was observed in extreme-
ultraviolet (EUV) wavelengths by the Atmospheric Imaging Assembly (AIA)
onboard the Solar Dynamics Observatory (SDO) spacecraft and in Hα line center
by the ground-based telescope at the Big Bear Solar Observatory (BBSO). The
early evolution of the flux rope is divided into two steps: a slow rise phase at
a speed of ≈230 km s−1 and a fast rise phase at a speed of ≈706 km s−1. The
eruption generates a C5.8 flare and the onset of the fast rise is consistent with
the hard X-ray (HXR) peak time of the flare. The embedded prominence has
a lower speed of ≈452 km s−1. The eruption is significantly inclined from the
local solar normal by ≈60◦, suggesting a typical non-radial eruption. During
the early eruption of the flux rope, the nearby coronal loops are disturbed and
experience independent kink-mode oscillations in the horizontal and vertical
directions. The oscillation in the horizontal direction has an initial amplitude
of ≈3.1 Mm, a period of ≈294 seconds, and a damping time of ≈645 seconds. It
is most striking in 171 Å and lasts for three to four cycles. The oscillations in
the vertical directions are observed mainly in 171, 193, and 211 Å. The initial
amplitudes lie in the range of 3.4 – 5.2 Mm, with an average value of 4.5 Mm.
The periods are between 407 seconds and 441 seconds, with an average value of
423 seconds. The oscillations are damping and last for nearly four cycles. The
damping times lie in the range of 570 – 1012 seconds, with an average value of
741 seconds. Assuming a semi-circular shape of the vertically oscillating loops,
we calculate the loop lengths according to their heights. Using the observed
periods, we carry out coronal seismology and estimate the internal Alfvén speeds
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(988 – 1145 km s−1) and the magnetic-field strengths (12 – 43 G) of the oscillating
loops.

Keywords: Prominences, Active; Coronal Mass Ejections, Initiation and Prop-
agation; Magnetic fields, Corona; Waves, Magnetohydrodynamic

1. Introduction

A magnetic flux rope is a bundle of twisted field lines that wind around their
common axis (see Liu, 2020, and references therein). The accumulated twist
number [Tw] can reach up to one to three turns (Liu et al., 2016; Guo et al.,
2021a). Flux ropes play an essential role in the genesis of solar eruptions (Chen,
2017; Cheng, Guo, and Ding, 2017), including prominence eruptions (Rust and
Kumar, 1996; Amari, Canou, and Aly, 2014), flares (Titov and Démoulin, 1999;
Janvier, Aulanier, and Démoulin, 2015; Wang et al., 2015), and coronal mass
ejections (CMEs: Dere et al., 1999; Vourlidas et al., 2013; Patsourakos et al.,
2020). It is still controversial whether flux ropes are generated before eruptions
(Canou et al., 2009; Green and Kliem, 2009; Zhang, Cheng, and Ding, 2012;
Zhang, Su, and Ji, 2017; James et al., 2018; Yan et al., 2018; Chen et al., 2019;
He et al., 2020; Nindos et al., 2020) or during eruptions (Cheng et al., 2011;
Gou et al., 2019). Photospheric flux cancellation is found to be important in
the formation of flux ropes before eruptions (Green, Kliem, and Wallace, 2011;
Savcheva et al., 2012), while tether-cutting magnetic reconnection in the corona
is believed to be an effective mechanism of flux-rope formation during eruptions
(Joshi, Magara, and Inoue, 2014; Xue et al., 2017). Flux ropes are frequently
observed to have very high temperatures (≈10 MK), which are best revealed in
extreme-ultraviolet (EUV) 94 Å and 131 Å and therefore termed “hot channel”
(Cheng et al., 2011, 2012, 2013, 2014). Nindos et al. (2015) analyzed 141 M-class
and X-class flares. About 32 % of the events are associated with hot channels
and almost half of the eruptive events are related to a hot channel configuration.

The directions of prominence eruptions and associated CMEs are not always
radial. McCauley et al. (2015) investigated the properties of 904 prominence and
filament eruptions observed by the Solar Dynamics Observatory (SDO) in detail.
It is found that the percentage of non-radial eruptions reaches 12 %. Devi et al.
(2021) reported a non-radial prominence eruption away from the local vertical
with an inclination angle of γ = 48◦, which is attributed to the easier channel
provided by the open and high-lying magnetic field. Using stereoscopic observa-
tions from the twin spacecraft of the Solar TErrestrial RElations Observatory
(STEREO: Kaiser et al., 2008), Gosain et al. (2009) observed a partial filament
eruption that was highly inclined to the solar normal with an inclination angle
of γ = 47◦, which is close to that reported by Williams et al. (2005). Combining
the observations from the STEREO-Ahead (hereafter STA) and the Atmospheric
Imaging Assembly (AIA: Lemen et al., 2012) onboard SDO, Sun et al. (2012a)
reported a non-radial, jet-like eruption following a markedly inclined trajectory
with γ = 66◦. Combining the observations from STEREO-Behind (hereafter
STB) and SDO/AIA, Bi et al. (2013) investigated the rotation and non-radial
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propagation of a filament, the later of which resulted from interaction between
the filament eruption and the overlying pseudo-streamer. In an extreme case,
a nearly 90◦ deflected filament eruption and the related CME were noticed
by Yang et al. (2018). State-of-the-art numerical simulations indicate that the
imbalance of the bipole leads to a negative magnetic pressure gradient in the x-
direction, which prevents the flux rope from expanding symmetrically (Aulanier
et al., 2010; Kliem et al., 2013; Inoue et al., 2018; Jiang et al., 2018). Guo et al.
(2021b) performed a magnetohydrodynamic (MHD) simulation of a C7.7 class
flare, which was generated by a non-radial prominence eruption on 21 June 2011
(Zhou et al., 2017).

Solar eruptions can potentially generate kink-mode, transverse oscillations of
the adjacent coronal loops (Aschwanden et al., 1999; Nakariakov et al., 1999;
Zimovets and Nakariakov, 2015) and quasi-periodic pulsations (QPP: Zimovets
et al., 2021). The polarization of the transverse loop oscillations could be hor-
izontal (White and Verwichte, 2012; Nisticò, Nakariakov, and Verwichte, 2013;
Li et al., 2017, 2018; Zhang et al., 2015, 2020; Zhang, 2020; Dai et al., 2021) or
vertical (Wang and Solanki, 2004; Gosain, 2012; White, Verwichte, and Foullon,
2012; Simões et al., 2013; Srivastava and Goossens, 2013; Kim, Nakariakov, and
Cho, 2014; Dud́ık et al., 2016; Verwichte and Kohutova, 2017; Reeves et al.,
2020). In most cases, the amplitudes of kink oscillations decay with time as a
result of resonant absorption, phase mixing, wave leakage, or Kelvin–Helmholtz
instability (Goossens, Andries, and Aschwanden, 2002; Ofman and Aschwan-
den, 2002; Ruderman and Roberts, 2002; Terradas, Oliver, and Ballester, 2006;
Goddard et al., 2016; Antolin et al., 2017; Nechaeva et al., 2019). The damping
time [τ ] is roughly proportional to the period [P ] (Verwichte et al., 2013), and
the quality factor [ τP ] has a power-law dependence on the amplitude with the
exponent of -0.5 (Goddard and Nakariakov, 2016). One of the applications of
coronal seismology is the estimation of the coronal magnetic field and Alfvén
speed of the oscillating loops (Nakariakov and Ofman, 2001; Aschwanden et al.,
2002; Verwichte et al., 2009; Chen and Peter, 2015). So far, there are few re-
ports of transverse coronal-loop oscillations triggered by non-radial prominence
eruptions.

On 7 December 2012, a prominence-carrying flux rope erupted from NOAA
Active Region (AR) 11621 (N15W91) and propagated non-radially, producing a
C5.8 flare and a fast CME. Based on the revised cone model, Zhang (2021) per-
formed a 3D reconstruction of the CME simultaneously observed by SDO/AIA
and STA/EUVI at 21:20:30 UT. The geometry and kinematics of the CME were
derived. In this article, we report the simultaneous coronal-loop oscillations in
the horizontal and vertical directions induced by the eruption in the same AR.
Data analysis is described in Section 2. The results are presented in Section 3
and compared with previous findings in Section 4. Finally, a brief summary is
given in Section 5.

2. Data Analysis

The prominence eruption was tracked by the ground-based telescope at the Big
Bear Solar Observatory (BBSO) in the Hα line center. The eruption of the flux
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Table 1. Description of the observational parameters.

Instrument λ Time Cadence Pixel Size

[Å] [UT] [s] [′′]

AIA 131 – 211 21:10 – 21:50 12 0.6

HMI 6173 21:10 – 21:50 45 0.6

EUVI 195 21:05 – 23:05 300 1.6

COR2 WL 22:24 – 23:39 900 14.7

LASCO/C2 WL 21:36 – 22:36 720 11.4

BBSO 6563 21:00 – 21:50 60 1.1

GOES 0.5 – 4 21:00 – 22:30 2.05 ...

GOES 1 – 8 21:00 – 22:30 2.05 ...

GBM 4 – 26 keV 21:05 – 21:30 0.256 ...

rope was detected by SDO/AIA in EUV wavelengths (131, 171, 193, and 211 Å).
The line-of-sight (LOS) magnetograms of the photosphere were observed by the
Helioseismic and Magnetic Imager (HMI: Scherrer et al., 2012) onboard SDO.
The AIA and HMI level 1 data were calibrated using the standard Solar Software
(SSW) program aia prep.pro and hmi prep.pro, respectively. The Hα and EUV
images were coaligned using the cross-correlation method.

The eruption was also captured by the Extreme-Ultraviolet Imager (EUVI)
in the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI:
Howard et al., 2008) package onboard STA, which had a separation angle of
≈128◦ with respect to the Sun–Earth direction on 7 December 2012. The CME
driven by the flux-rope eruption was observed by the C2 white light (WL)
coronagraph of the Large Angle Spectroscopic Coronalgraph (LASCO: Brueckner
et al., 1995) onboard the Solar and Heliospheric Observatory (SOHO). The
LASCO/C2 data were calibrated using the SSW program c2 calibrate.pro. The
CME was observed by the COR2 coronagraph onboard STA as well. Calibrations
of the COR2 and EUVI data were performed using the SSW program sec-
chi prep.pro. The deviation of STA north–south direction from the solar rotation
axis was corrected. The soft X-ray (SXR) fluxes of the C5.8 flare were recorded
by the Geostationary Operational Environmental Satellite (GOES) spacecraft.
The hard X-ray (HXR) fluxes at different energy bands were obtained from the
the Gamma-ray Burst Monitor (GBM: Meegan et al., 2009) onboard the Fermi
spacecraft. The observational properties of the instruments are listed in Table 1.

3. Results

3.1. Eruption of the Prominence-carrying Magnetic Flux Rope

In Figure 1, the upper panel shows the SXR light curves of the C5.8 flare in 1 – 8 Å
(red line) and 0.5 – 4 Å (blue line). It is clear that the SXR flux increases rapidly
from ≈21:13:00 UT and reaches the peak value at ≈21:21:15 UT (black-dashed
line) before declining gradually to the pre-flare level around 22:13:00 UT. Hence,
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Figure 1. (a) Soft X-ray (SXR) light curves of the GOES C5.8 flare in 1 – 8 Å (red line) and
0.5 – 4 Å (blue line). The black-dashed line denotes the peak time at 21:21:15 UT. (b) Hard
X-ray (HXR) light curves of the flare observed by Fermi/GBM at 4 – 11 keV (orange line) and
11 – 26 keV (yellow line). The black-dashed line denotes the HXR peak time at 21:18:00 UT.

the lifetime of the flare is ≈1 hr. Figure 1b shows the HXR light curves at 4 –
11 keV (orange line) and 11 – 26 keV (yellow line). The black-dashed line denotes
the HXR peak time at ≈21:18:00 UT when the rate of energy precipitation of
flare-accelerated nonthermal electrons is maximum (Brown, 1971).

Four selected LOS magetograms from 4 December to 7 December 2012 are
displayed in Figure 2. It is seen that AR 11621 was still distinguishable on 5
December. As time goes by, it got blurred on 6 December close to the western
limb and totally vanished on 7 December, implying that it had rotated to the
backside of the Sun when the flare took place.

The EUV images in Figure 3 illustrate the evolution of the prominence-
carrying flux rope (see also the Electronic Supplementary Material animaia.mp4).
As the flare occurs, the flux rope shows up before 21:18:00 UT (a2 – d2). The
bubble-like flux rope expands in size and propagates in the southwest direction.
An embedded prominence follows the flux rope. It is obvious that the trajectory
is severely inclined to the solar normal with γ = 60◦, meaning that the event is
a typical non-radial eruption (Zhang, 2021). The thin leading edge of the flux
rope could not be tracked after escaping the field-of-view (FOV) of AIA around
21:21:40 UT. The eruption is evident in various EUV wavelengths, suggesting
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Figure 2. HMI LOS magetograms from 4 December to 7 December 2012. AR 11621 hosting
the C5.8 flare is marked. The gold-dashed lines denote the approximate polarity inversion line
(PIL).

Figure 3. EUV images in 131 Å (a1 – a6), 171 Å (b1 – b6), 193 Å (c1 – c6), and 211 Å
(d1 – d6). The arrows point to the oscillating loops (OLs), flux rope (FR), and eruptive
prominence (prom). In Panel d1, two short slices (S2 and S3) are used to investigate the
transverse oscillations of the coronal loops in the horizontal and vertical directions, respectively.
In Panel d2, a long slice (S1) is used to investigate the evolution of the flux rope. An animation
of this figure is available in the Electronic Supplementary Material (animaia.mp4).

the multi-thermal nature of flux rope and prominence (Hannah and Kontar,
2013). We note that a group of coronal loops to the North of the flux rope are
slightly disturbed during the eruption and oscillate for a long time, which will
be described in Section 3.2.

The prominence eruption is also vivid in Hα line center (see animation in the
Electronic Supplementary Material animha.mp4). Figure 4 shows the Hα images
observed by BBSO. The prominence arises slowly at ≈21:16:00 UT and expands
quickly, resembling a tennis racket (see Panel d). The top segment is fitted
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Figure 4. Hα images observed by BBSO. The arrows point to the eruptive prominence
(prom). In Panel d, a dotted ellipse is used to fit the top segment of prominence. An animation
of this figure is available in the Electronic Supplementary Material (animha.mp4).

with an ellipse (dotted line), whose major axis and minor axis have lengths
of 86′′ and 64′′, respectively. The location and shape of the prominence are
consistent with that observed in EUV wavelengths (see Figure 3a4 – d4) and are
in agreement with the typical U-shaped prominence horns both in observation
(Régnier, Walsh, and Alexander, 2011) and numerical simulations (Xia et al.,
2014). The prominence continues ascending and the top segment escapes the
FOV of BBSO. It is noticed that the bubble-like flux rope in EUV wavelengths
is not distinct in Hα.

To investigate the evolution of flux rope and prominence, we select a slice (S1)
with a total length of ≈296′′ along the direction of their propagation, which is
shown in Figure 3d2. The time–distance diagrams of S1 in 131, 171, 193, and
211 Å are displayed in Figure 5. In Figure 5a, the positions of the flux rope
leading edge are labeled with a magenta dashed line, whose slope represents its
apparent linear speed (≈706 km s−1). The positions of the following prominence
are labeled with red-dashed lines, whose slopes represent its apparent linear
speed (≈452 km s−1). Hence, the speed of the flux rope is ≈1.5 times larger than
the prominence.

As mentioned in Section 1, the eruption of the flux rope drives a fast and
wide CME. In Figure 6, the upper and lower panels show the WL images of the
CME observed by LASCO/C2 and STA/COR2, respectively. The leading fronts
of the CME are pointed to by the arrows. The CME first appears at ≈21:36:00
UT in the LASCO/C2 FOV and propagates westward with a central position
angle of 299◦. The CME first appears at ≈22:24:00 UT in the STA/COR2 FOV
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Figure 5. Time–distance diagrams of S1 in 131, 171, 193, and 211 Å. The linear velocities of
flux rope (≈706 km s−1) and prominence (≈452 km s−1) are indicated.

Figure 6. WL images of the CME observed by LASCO/C2 (upper panels) and STA/COR2
(lower panels). The arrows point to the CME leading front.
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Figure 7. (a) Height variation of the flux-rope leading edge along S1 in 131 Å. The appar-
ent linear speeds of slow rise (≈230 km s−1) and fast rise (≈706 km s−1) are indicated. The
black-dashed line denotes the HXR peak time at 21:18:00 UT. (b) Height variation of the
CME leading front observed by LASCO/C2. The plane-of-sky linear speed (≈684 km s−1) is
indicated.

and propagates eastward until ≈23:54:00 UT, when the CME becomes too weak
to be identified. It is shown that although the flux rope propagates non-radially
in the FOV of AIA, the position angle of the related CME is close to the latitude
of AR 11621, implying that the flux rope is probably influenced and redirected
by the large-scale magnetic field.

In Figure 7, the upper panel shows the height evolution of the flux rope
leading edge in 131 Å, which is determined manually in the direction of S1. The
movement of the flux rope is roughly divided into two phases by the HXR peak
(black-dashed line): a slow rise (≈230 km s−1) and a fast rise (≈706 km s−1),
which is in line with previous observations (Cheng et al., 2013). The height
evolution of the CME leading front in the FOV of LASCO/C2 is plotted in the
lower panel of Figure 7. The apparent speed (≈684 km s−1) of CME is indicated.
Taking the projection effect into account, the speeds of the flux rope and CME
are comparable, validating that the flux rope serves as a driver of the CME
(Cheng et al., 2013).
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Figure 8. Base-difference images observed by STA/EUVI in 195 Å. The arrows point to
the flare, CME front, and coronal dimming behind the CME. An animation of this figure is
available in the Electronic Supplementary Material (anim195.mp4).

The prominence eruption was observed by STA/EUVI from a different view-
point (see animation in the Electronic Supplementary Material anim195.mp4).
Four 195 Å base-difference images are displayed in Figure 8. In Panel a, the
source region of the flare and CME is located at (-590′′, 300′′) as indicated
by the arrow. In Panel b, the arc-shaped CME leading front with enhanced
intensity is pointed by the arrow. In Panels c – d, long-lasting coronal dimming
behind the CME with reduced intensity and expanding area is the most striking
feature (Thompson et al., 1998; Zhang, Su, and Ji, 2017). It is evident that as
the CME propagates in the southeast direction, the dimming mainly extends in
the south and east directions, rather than isotropically.

3.2. Transverse Coronal-Loop Oscillations

As mentioned before, the coronal loops to the North of the prominence are dis-
turbed and start oscillating during the eruption (see animation in the Electronic
Supplementary Material animaia.mp4). In Figure 3d1, two slices (S2 and S3) are
used to investigate the transverse oscillations. The slightly curved slice S2 with a
total length of ≈188.5′′ is parallel to the solar surface. The straight slice S3 with
a length of ≈172′′ is vertical to the solar surface. The time–distance diagram
of S2 in 171 Å is displayed in Figure 9. The positions of the oscillating loop
with maximal EUV intensity are denoted by the magenta-plus symbols. After
the flare occurs, the coronal loop first moves southward and sways from side to
side periodically. The amplitude decays with time and the oscillation lasts for
three to four cycles. The initial southward movement is caused by the strong
magnetic-pressure gradient after the flux rope quickly escapes the active region.

In Figure 10c, the positions of the oscillating loop along S2 are drawn with
cyan circles. To precisely determine the physical parameters of the oscillation,
we perform curve fitting by adopting an exponentially decaying sine function
(Nisticò, Nakariakov, and Verwichte, 2013):

y(t) = A0 sin(
2π

P
(t− t0) + φ0)e−(t−t0)/τ + y0 + k(t− t0) + c(t− t0)2, (1)

where A0 and φ0 stand for the initial amplitude of displacement and phase at t0,
P and τ signify the period and damping time, y0 denotes the initial loop position,
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Figure 9. Time–distance diagram of S2 in 171 Å. The magenta-plus symbols denote the
positions of the oscillating loop with maximal EUV intensity. The red arrow on the x-axis
indicates the starting time of flare. s = 0 and s = 188.5′′ on the y-axis represent the southwest
and northeast endpoints of S2, respectively.

and k and c denote the coefficients of linear and quadratic terms, respectively.
The results of curve fitting using mpfit.pro are drawn with a magenta-dotted line.
It is evident that the transverse oscillation can be nicely described by Equation 1.
In Table 2, the fitted values of t0 (≈21:20:11 UT), A0 (≈3.1 Mm), P (≈294 s),
τ (≈645 s), and τ

P (≈2.2) are listed in the second to sixth columns. It should
be emphasized that the transverse oscillation in the horizontal direction is most
striking in 171 Å and becomes blurred in 193 and 211 Å.

The time–distance diagrams of S3 in 171, 193, and 211 Å are displayed in
Figure 11. The positions of the loop tops are denoted by the cyan-plus symbols.
Interestingly, the coronal loops start to oscillate vertically after the flare occurs.
The amplitudes also decay with time and the oscillations last for three to four
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Figure 10. The positions (blue circles) of the coronal loop tops along S3 in 171, 193, and
211 Å. The results of curve fitting using Equation 2 are overlaid with red-dotted lines. In Panel
c, the positions of the coronal loop along S2 in 171 Å are plotted with cyan circles. The results
of curve fitting using Equation 1 are overlaid with a magenta-dotted line.

Table 2. Parameters of the transverse coronal-loop oscillations in 171, 193, and 211 Å. A0 is the initial
amplitude at t0. P and τ signify the period and damping time. h is the apparent height of loop top. L
is the loop length assuming a semi-circular shape. Ck and CA represent the phase speed and internal
Alfvén speed of the loop. B denotes the magnetic field strength of the loops.

slice t0 A0 P τ τ
P

h 2L Ck CA B

[UT] [Mm] [s] [s] [Mm] [Mm] [km s−1] [km s−1] [G]

S2 171 21:20:11 3.1±0.3 293.6±5 645.3±39 2.2 ... ... ... ... ...

S3 171 21:19:47 3.4±0.3 441.4±8 1011.8±96 2.3 93.5 587.6 1331.3 987.6 12-37

S3 193 21:20:18 5.2±0.4 407.2±5 570.8±34 1.4 100.1 628.6 1543.8 1145.3 14-43

S3 211 21:20:47 5.0±0.4 419.2±6 641.4±43 1.5 100.1 628.6 1499.6 1112.5 13-41

cycles. The initial inward motion indicates loop contraction or implosion before
oscillation (e.g. Gosain, 2012; Sun et al., 2012b; Simões et al., 2013; Dud́ık et al.,
2016). This is consistent with the fact that the vertical loop oscillations are
caused by the eruption of the flux rope, since the magnetic pressure beneath the
loops is impulsively decreased after the eruption.

The positions of the loop tops in 171, 193, and 211 Å are manually determined
and are drawn with blue circles in Figure 10. Likewise, we perform curve fitting
by adopting an exponentially decaying sine function:

y(t) = A0 sin(
2π

P
(t− t0) + φ0)e−(t−t0)/τ + y0 + k(t− t0), (2)
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Figure 11. Time–distance diagrams of S3 in 171, 193, and 211 Å. The cyan-plus symbols
denote the positions of the loop tops. The red arrow on the x-axis indicates the starting time
of flare. s = 0 and s = 172′′ on the y-axis represent the east and west endpoints of S3.

where the parameters have the same meanings as in Equation 1. The results
of curve fitting are drawn with red-dotted lines, showing that the vertical os-
cillations can be well described by Equation 2. In Table 2, the fitted values
of t0, A0, P , τ , and τ

P are listed in the second to sixth columns. The initial
amplitudes lie in the range of 3.4 – 5.2 Mm with an average value of ≈4.5 Mm.
The periods have a range of 407 – 441 s with an average value of ≈423 s. The
damping times are between 570 s and 1012 s with an average value of ≈741
s. The corresponding quality factors ( τP ) are between 1.4 and 2.3 with a mean
value of ≈1.7, suggesting a quick attenuation (White, Verwichte, and Foullon,
2012). In 171 Å, the period of oscillation in the vertical direction is ≈1.5 times
longer than that in the horizontal direction, while the quality factors are close
to each other, indicating that the transverse oscillations in both directions are
independent rather than two components of the same oscillation. In Table 2,
the apparent heights of the loop tops are listed in the seventh column. The loop
heights in 193 and 211 Å are higher than those in 171 Å with lower temperature
of the response function peak (Lemen et al., 2012). In other words, the coronal
loops with different heights oscillate in phase (Zhang et al., 2020).

The commencements of oscillations in both horizontal and vertical directions
occur during the fast rise of the flux rope (Figure 7a), which is in accordance
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(a)  viewpoint from SDO (b)  viewpoint from STA

OLs

eruption eruption

open field open field

Figure 12. The 3D magnetic configuration at 18:04:00 UT from the viewpoints of SDO (a)
and STA (b) using the PFSS modeling. The white and magenta lines represent the closed and
open field, respectively. The red arrows indicate the directions of prominence eruption.

with the fact that the transverse oscillations are caused by the flux-rope eruption.
That is to say, the coronal loops are not disturbed until the flux rope expands
and propagates after a time. It is emphasized that the simultaneous oscillations
in the horizontal direction and vertical directions are from different coronal loops
superposed along the LOS, since the coronal loop undergoing horizontal oscilla-
tion drifts southward from the equilibrium position (see Figure 9). Moreover, the
period of vertical oscillation is 1.5 times longer than the horizontal oscillation in
171 Å.

4. Discussion

4.1. What is the Cause of Non-radial Eruption?

As mentioned in Section 1, non-radial prominence eruptions are frequently ob-
served (e.g. Williams et al., 2005; Gosain et al., 2009; Sun et al., 2012a; Bi et al.,
2013; Panasenco et al., 2013; Yang et al., 2018; Mitra and Joshi, 2019; Devi
et al., 2021; Guo et al., 2021b; Mancuso et al., 2021). The reported inclination
angle is between 45◦ and 90◦. The non-radial eruption is attributed to the
imbalance of magnetic pressure of the high-lying field (Aulanier et al., 2010). In
the current case, the apparent inclination angle of the flux rope is 60◦. We obtain
the global 3D magnetic configuration at 18:04:00 UT using the potential-field
source surface (PFSS: Schrijver and De Rosa, 2003) modeling. Figure 12 shows
the configuration from the viewpoints of SDO (a) and STA (b), respectively.
Combining Figure 12 and Figure 3, it is revealed that the flux rope finds a way
out where the magnetic field is weaker and the escape becomes easier. This is
consistent with the previous interpretation (Aulanier et al., 2010).
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4.2. How are the Transverse Loop Oscillations Excited?

Two decades have passed since the discovery of coronal-loop oscillations (see
Li et al., 2020; Nakariakov and Kolotkov, 2020; Nakariakov et al., 2021; Wang
et al., 2021, and references therein). Kink oscillation has become a topic of
great interest due to its advantage in diagnosing the coronal magnetic field
(Yang et al., 2020). There are several candidates in exciting kink oscillations,
such as flare-induced blast waves (Nakariakov et al., 1999; Zhang, 2020), large-
scale coronal waves (Kumar et al., 2013), coronal jets (Dai et al., 2021), lower
coronal eruptions/ejections (LCE: Zimovets and Nakariakov, 2015), coronal rains
(Antolin and Verwichte, 2011), and reconnection outflows (Reeves et al., 2020).
A common characteristic of the above excitation mechanisms is that the coronal
loops start oscillating after being impacted. In our case, a pressure depletion is
created as a result of the non-radial flux-rope eruption. Hence, the transverse
loop oscillations are driven by the strong magnetic-pressure gradient of the loops
(see animaia.mp4), which is rarely noticed and reported. Numerical simulations
are desired to justify this mechanism.

In Figure 9 and Figure 11, there are several oscillating threads with non-
zero phase differences compared to the analyzed loops. This is probably because
a bundle of loops with different lengths and periods oscillate simultaneously
(White and Verwichte, 2012; Nisticò, Nakariakov, and Verwichte, 2013). We focus
on oscillations with clear and complete signals. It is emphasized that our anal-
ysis has LOS limitations in classifying oscillations into horizontal and vertical
types based on single-point observation. The possibility of elliptically polarized
transverse oscillations that are decomposed into two linearly polarized modes
with different periods could not be excluded. Forward modeling and multi-point
observations are required to clarify the polarization of kink oscillations (White,
Verwichte, and Foullon, 2012).

4.3. Magnetic Field Estimated from Coronal Seismology

To estimate the magnetic field of the loops undergoing vertical oscillations,
we use the observed periods and coronal seismology. The phase speed [Ck] of
the standing kink oscillation is determined by the loop length [L] and period
(Nakariakov et al., 1999):

Ck =
2L

P
=

√
2

1 + ρe/ρi
CA, (3)

where CA is the internal Alfvén speed, and ρe and ρi represent the external and
internal plasma densities. The lengths of the oscillating loops are listed in the
eighth column of Table 2 based on a semi-circular shape. The corresponding
values of Ck and CA are listed in the ninth and tenth columns, assuming that
ρe/ρi = 0.1 (Nakariakov and Ofman, 2001).

The magnetic-field strength of the oscillating loops is determined by ρi and
CA, B =

√
4πρiCA. Since the LOS depths of the oscillating loops are difficult

to measure, we could not determine ρi precisely. Assuming that ρi is between
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1.1×10−15 g cm−3 and 1.1×10−14 g cm−3, corresponding to the electron number
density between 0.7×109 cm−3 and 7×109 cm−3 (e.g. Nakariakov and Ofman,
2001; Van Doorsselaere et al., 2008; Verwichte et al., 2009, 2013; Yuan and Van
Doorsselaere, 2016; Dai et al., 2021), the magnetic-field strengths of the loops
observed in different wavelengths are calculated and listed in the last column of
Table 2. Hence, the magnetic fields of the vertically oscillating loops fall in the
range of 12 – 43 G. It is noted that the estimated magnetic field using coronal
seismology has large uncertainties. On one hand, the plasma density could not
be precisely determined, so that a wide range is adopted according to previous
literature. On the other hand, the shape of the loops is unknown, so that a
simple semi-circular shape is employed. Besides, the apparent heights [h] and
corresponding lengths [L] of the loops are lower limits of the true values. The
estimations of Ck, CA, and B in Table 2 are lower limits as well. Considering that
the loops undergoing horizontal and vertical oscillations are heavily superposed
along the LOS, the height of oscillating loop in the horizontal direction is hard
to determine. Therefore, the horizontal oscillation is not used for seismology.

5. Summary

In this article, we investigate the transverse coronal loop oscillations induced by
the eruption of a prominence-carrying flux rope on 7 December 2012. The main
results are as follows:

1. The flux rope originating from AR 11621 is observed in various EUV wave-
lengths, suggesting its multi-thermal nature. The early evolution of the flux
rope is divided into two phases: a slow rise phase at a speed of ≈230 km s−1

and a fast rise phase at a speed of ≈706 km s−1. The eruption generates a
C5.8 flare and the onset of fast rise is consistent with the HXR peak time
of the flare. The embedded prominence has a lower speed of ≈452 km s−1.
The propagation of the flux rope is along the southwest direction in the
FOV of AIA. Hence, the inclination angle between the direction of flux
rope eruption and the local solar normal reaches ≈60◦, suggesting a typical
non-radial eruption.

2. During the early eruption of the flux rope, the nearby coronal loops are
disturbed and experience kink-mode oscillations. The oscillation in the hori-
zontal direction has an initial amplitude of ≈3.1 Mm, a period of ≈294 s, and
a damping time of ≈645 s. It is most striking in 171 Å and lasts for three to
four cycles. The oscillations in the vertical directions are observed mainly in
171, 193, and 211 Å. The initial amplitudes lie in the range of 3.4 – 5.2 Mm,
with an average value of 4.5 Mm. The periods are between 407 seconds and
441 seconds, with an average value of 423 seconds (≈7 minutes). The oscil-
lations are damping and last for nearly four cycles. The damping times lie
in the range of 570 – 1012 seconds, with an average value of 741 seconds.

3. Assuming a semi-circular shape of the vertically oscillating loops, we cal-
culate the loop lengths according to their heights. Using the observed pe-
riods, we carry out coronal seismology and estimate the internal Alfvén
speeds (988 – 1145 km s−1) and the magnetic-field strengths (12 – 43 G) of
the oscillating loops.
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